In March 2009, British researcher Mark Gasson had a chip injected under the skin of his hand. The chip, a slightly more advanced version of the tags used to track pets, turned Gasson into a walking swipe-card. With a wave of his wrist, he could open security doors at the University of Reading laboratory, where his experiment was being conducted, and he could unlock his cell phone just by cradling it.
A year later, Gasson infected his own implant with a computer virus, one that he could pass on to other computer systems if the building's networks were programmed to read his chip. As Gasson breezed around the the workplace, spreading the virus and corrupting computer systems, certain areas of the building became inaccessible to his colleagues.
Microchips Will Be Implanted Into Healthy People Sooner Than You Think

At the time of the experiment, theoretical physicist and author of "The Future of the Mind" Michio Kaku told FOX News that demonstrating the ability to spread infection was an "important point" because "we're going to have more chips in our body and clothing."
Thousands of Americans already have implanted medical devices, including pacemakers, which are inserted into the chest to treat abnormal heart rhythms, and cochlear implants, which help deaf people to hear.
But the future, Gasson says, is going to focus on implantable technology for healthy people. Part of the reason is that we continually look for ways to make our lives easier. The question is whether we're willing accept both the unintended and unknown consequences that come with giving up partial control of our bodies to technology.
Human vs. Machine
Implantable microchips provide a more intimate connection with technology than that of any other portable electronic device, like a cell phone or iPod, because the tag becomes a direct part of us when it's inserted into our body. Implants "have the potential to change the very essence of what it is to be human," Gasson said at a 2012 TEDX Talk.
The susceptibility of human microchips to cyber attacks is one worry, but Gasson wanted to explore issues beyond common concerns related to privacy and security.
That's why he conducted the experiment in two stages: A surgeon initially inserted a clean computer chip into his hand, and the computer virus was unleashed a little over a year later. During that time, Gasson and his team were particularly interested in studying the psychological implications of implanted devices.
"There's an underlying feeling that [having an implantable device] is an alien phenomenon," said Gasson, a cybernetics expert. The only way to properly explore the psychological aspect was to have the device himself, he said.
What is an RFID implant?
View gallery
RFIDimplant 06_photo_byline_Paul_Hughes
Mark Gasson
A close-up of the implant device next to a match stick. The microchip, encased in glass, is about the size of a grain of rice.
RFID stands for radio frequency identification. The chip doesn't have its own battery, powered instead by a reader that pulls information out of the chip. The reader gets the chip's unique ID number and then cross references it to a database. RFID chips are found in lots of things we use every day, including credit cards.
Similar, if not creepier, technology is currently at work in things like Disney World's MagicBand, which tracks a wearer's location within the park and connects to that person's accounts, according to a recent Medium post. These technologies have been useful not just for the company but for park guests — it makes their experience seamless.
These technologies are also being used for payment services: Some people use Google Wallet and Tap-To-Pay services to pay using their phones at stores and in cabs, instead of whipping out their wallet or carrying all their cards with them. The Hilton just recently announced a feature to replace keycards at its hotels. Guests will use an app to access their room.
As these technologies get more advanced and their uses get more varied, why would we be carrying a phone around when we could do all these things with a swipe of the hand?
Why an implant?
View gallery
The chip implanted in Gasson's thumb, which is roughly the shape and size of a grain of rice, functions "like a tiny computer." It can store information like a small USB memory stick.
The chip appears as an extremely small, though visible, bump on the side of his finger. "It does freak people out quite a bit," Gasson said. "But it doesn't look grotesque."
Unsurprisingly, Gasson says the chip did not immediately feel like part of his body. But the distinction faded over time as he used the chip more and more. "Unlike keys or a phone, you don't have to think about carrying this type of device, and then you seamlessly use it and forget about it."
Gasson has no plans to remove the chip.
View gallery
RFIDimplant 03_photo_byline_Paul_Hughes
Mark Gasson
Mark Gasson from the University of Reading holding the computer chip that was injected into his hand.
Gasson's research in human microchips parallels the work of a growing community of people, so-called biohackers, who view microchipping as the next form of human evolution. Hacking tends to have a negative connotation, but this new group of technology enthusiasts offers a different meaning. In their world, the goal of hacking is not to inflict harm, but to transform something from its original purpose into something more useful.
The human body has limitations, but biohackers are constantly thinking of how those limitations can be overcome — how life can be made better or more convenient (like removing the need to carry around keys all the time) through the use of technology.
And the desire for these technologies is there. The company Dangerous Things has developed the first DIY kit for implantable devices, which back in December raised more than $30,000 from it's $8,000 Indiegogo goal. The package comes with everything you need to insert the chip yourself. The chip allows you to interact with other devices by waving your hand or entering a room. You can buy one now for $99.


Post a Comment


Popular Posts